A New Form of Coordinated Carbon: An Unsupported C₃ Chain Spanning Two Different Transition Metals

Weiqing Weng, James A. Ramsden, Atta M. Arif, and J. A. Gladysz*

Department of Chemistry, University of Utah Salt Lake City, Utah 84112

Received February 2, 1993

Diverse forms of elemental carbon (C_x) have been incorporated into stable transition-metal complexes. Representative examples include single carbon atoms entombed in polymetallic clusters, C_{60} and related allotropes bound as π -ligands, and unsupported C_1 and C_2 chains spanning two metals.¹⁻⁵ In addition to their intrinsic appeal as basic research objectives, such compounds have promising materials and catalytic properties.^{6,7}

Recently, several complexes have been prepared that contain unsupported C_4 chains linking two transition metals.⁵ However, complexes with C_3 or higher *odd-membered* chains are unknown. We sought to develop methodology that would allow this class of compounds to be accessed. In particular, we have shown that transition-metal ethynyl complexes, $L_nMC=CH$, can react with strong organolithium bases to give C_2 derivatives $L_nMC=C^-Li^+$ (I). These can be functionalized by electrophiles in high yields.^{4c,8} Hence, we planned to append a third carbon by elaboration to bimetallic Fischer carbene complexes containing C_3OMe units (II), as shown in Scheme I. Methoxy groups have been previously abstracted from many Fischer carbene complexes, giving either cationic or neutral carbyne complexes.⁹ In the case of II, this would yield the C_3 adduct III, to which the fully cumulated resonance form IV might make a structural contribution.

Thus, the rhenium/lithium C₂ species $(\eta^{5}-C_{5}Me_{5})Re(NO)-(PPh_{3})(C=CLi)$ (1) was generated as reported earlier⁸ and treated with the carbonyl complexes $W(CO)_{6}$, $Fe(CO)_{5}$, and $Mn(CO)_{3}-(\eta^{5}-C_{5}H_{5})$. Subsequent additions of $Me_{3}O^{+}BF_{4}^{-}$ gave the bimetallic alkynyl Fischer carbene complexes $(\eta^{5}-C_{5}Me_{5})Re(NO)(PPh_{3})(C=C-C(OMe)=)M(CO)_{x}(\eta^{5}-C_{5}H_{5})_{y}(M/x/y = 2, W/5/0; 3, Fe/4/0; 4, Mn/2/1)$ in 67–73% yields, as summarized in Scheme II.

Complexes 2–4 were characterized by microanalysis and IR, NMR (1 H, 13 C, 31 P), and mass spectroscopy. 10 Their structures followed readily from these data, which included mass spectral

(1) Lead 1992 references to carbide cluster compounds: (a) Chisholm, M. H.; Hammond, C. E.; Johnston, V. J.; Streib, W. E.; Huffman, J. C. J. Am. Chem. Soc. 1992, 114, 7056. (b) Akita, M.; Sugimoto, S.; Tanaka, M.; Morooka, Y. Ibid. 1992, 114, 7581. (c) Adams, C. J.; Bruce, M. I.; Liddell, M. J.; Skelton, B. W.; White, A. H. J. Chem. Soc., Chem. Commun. 1992, 1314.

(2) Lead references to C_{60} complexes: (a) Balch, A. L.; Catalano, V. J.; Lee, J. W.; Olmstead, M. M. J. Am. Chem. Soc. **1992**, 114, 5455. (b) Fagan, P. J.; Calabrese, J. C.; Malone, B. Ibid. **1991**, 113, 9408.

(3) Lead references to $L_nMCM'L'_n$ complexes: (a) Beck, W.; Knauer, W.; Robl, C. Angew. Chem., Int. Ed. Engl. 1990, 29, 318. (b) Etienne, M.; White, P. S.; Templeton, J. L. J. Am. Chem. Soc. 1991, 113, 2324.

(4) Lead references to L₁₁MCCM'L'₁₁ complexes: (a) Koutsantonis, G. A.;
Selegue, J. P. J. Am. Chem. Soc. 1991, 113, 2316. (b) Lemke, F. R.; Szalda,
D. J.; Bullock, R. M. Ibid. 1991, 113, 8466. (c) Ramsden, J. A.; Weng, W.;
Arif, A. M.; Gladysz, J. A. Ibid. 1992, 114, 5890.
(5) L₁₁MCCCCM'L'₁₁ complexes: (a) Wong, A.; Kang, P. C. W.; Tagge,

(5) L_uMCCCCM'L'_n complexes: (a) Wong, A.; Kang, P. C. W.; Tagge,
C. D.; Leon, D. R. Organometallics 1990, 9, 1992. (b) Fyfe, H. B.; Mlekuz,
M.; Zargarian, D.; Taylor, N. J.; Marder, T. B. J. Chem. Soc., Chem. Commun.
1991, 188. (c) Stang, P. J.; Tykwinski, R. J. Am. Chem. Soc. 1992, 114, 4411.
(d) Crescenzi, R.: Sterzo, C. L. Organometallics 1992, 14, 4301.

(d) Crescenzi, R.; Sterzo, C. L. Organometallics **1992**, *11*, 4301.
 (e) (a) Lewis, J.; Khan, M. S.; Kakkar, A. K.; Johnson, B. F. G.; Marder, T. B.; Fyfe, H. B.; Wittmann, F.; Friend, R. H.; Dray, A. E. J. Organometallics **1992**, *425*, 165. (b) Sun, Y.; Taylor, N. J.; Carty, A. J. Organometallics **1992**, *11*, 4293.

(7) Izumi, Y.; Chihara, T.; Yamazaki, H.; Iwasawa, Y. J. Chem. Soc., Chem. Commun. 1992, 1395.

(8) Ramsden, J. A.; Weng, W.; Gladysz, J. A. Organometallics 1992, 11, 3635.

(9) Fischer, H. In Carbyne Complexes; Fischer, H., Hoffmann, P., Kreiβl,
 F. R., Schrock, R. R., Schubert, U., Weiss, K., Eds.; VCH: New York, 1988;
 Chapter 1.

parent ions. The IR $\nu_{C \equiv C}$ (2/3/4 2061/2041/1968 cm⁻¹, m-s) and ν_{CO} absorptions were assigned by comparisons with other Fischer carbene complexes, including C = C derivatives.¹¹ The ¹³C NMR spectra showed downfield CM [ppm, C₆D₆: 253.2 (d, $J_{CP} = 3$ Hz, $J_{CW} = 93$ Hz), 256.6 (s), 283.9 (s)] and ReCC resonances [C_a/C_b 204.9 (d, $J_{CP} = 12$ Hz)/157.5 (s, $J_{CW} = 10$ Hz), 204.0 (d, $J_{CP} = 13$ Hz)/152.0 (s), 166.8 (d, $J_{CP} = 14$ Hz)/ 146.2 (s)]. However, the ReC_a chemical shifts and IR ν_{NO} values (1674-1648 cm⁻¹, s) were intermediate between those of alkynyl complexes (η^5 -C₅Me₅)Re(NO)(PPh₃)(C = CR) [98-86 ppm (d, $J_{CP} = 16-18$ Hz); 1629-1637 cm⁻¹) and vinylidene complexes [(η^5 -C₅Me₅)Re(NO)(PPh₃)(= C = CRR')]⁺BF₄⁻ [329 ppm (d, $J_{CP} = 10-11$ Hz); 1681-1698 cm⁻¹].⁸ These and other data suggested contributions by zwitterionic ⁺Re=C = C = C = C (OMe)-M⁻ resonance forms.

Thus the crystal structure of **2** was determined (Figure 1).¹⁰ The ReC bond length (1.973(7) Å) was between those of $(\eta^5-C_5H_5)Re(NO)(PPh_3)(C=CCH_3)$ and $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=C=CH(1-naphthyl)]^+PF_6^-(2.066(7), 1.84(2) Å),^{12}$ which provide models for the limiting Re-C=C-C(OMe)==W and +Re=C=C(OMe)-W⁻ resonance forms. Also, the C-C(OMe) bond in **2** (1.38(1) Å) was shorter than the C-CH₃ bond in $(\eta^5-C_5H_5)Re(NO)(PPh_3)(C=CCH_3)$ (1.48(1) Å) and the R-C(OR') bonds in tungsten carbene complexes (RC-

⁽¹⁰⁾ Data are given in the supplementary material. The BF_4 anions in 5·(CH_2Cl_2)_{0.5} were slightly disordered, and 19 of the 103 independent non-hydrogen atoms were refined isotropically.

 ^{(11) (}a) (RC=CC(OR')=)W(CO);: Köhler, F. H.; Kalder, H. J.; Fischer, E. O. J. Organomet. Chem. 1976, 113, 11. Fischer, E. O.; Freiβl, F. R. Ibid. 1972, 35, C47. (b) (RC=CC(OR')=)Fe(CO)₄: Park, J.; Kang, S.; Whang, D.; Kim, K. Organometallics 1991, 10, 3414.

D.; Kim, K. Organometallics **1991**, 10, 3414. (12) Senn, D. R.; Wong, A.; Patton, A. T.; Marsi, M.; Strouse, C. E.; Gladysz, J. A. J. Am. Chem. Soc. **1988**, 110, 6096.

Figure 1. Structures of 2 (top) and the cation of a CH_2Cl_2 hemisolvate of 5 (bottom). Selected bond lengths (Å) and angles (deg): 2, Re-C40 1.973(7), C40–C41 1.23(1), C41–C42 1.38(1), C42–02 1.353(9), C42–W 2.200(8), Re-P 2.398(2), Re-C40–C41 172.3(7), C40–C41–C42 174.5-(8), C41–C42–O2 116.5(7), C41–C42–W 128.1(6); 5 (CH_2Cl_2)_{0.5} (two independent cations), Re–C40 1.92(1)/1.93(1), C40–C41 1.26(2)/1.28-(2), C41–C42 1.32(2)/1.28(2), C42-Mn 1.75(2)/1.75(2), Re–P 2.413-(4)/2.410(4), Re–C40–C41 173(1)/175(1), C40–C41–C42 175(2)/170(2), C41–C42–Mn 178(1)/178(2).

 $(OR') = W(CO)_5 (1.48-1.52 \text{ Å})^{.13}$ These trends indicate that the zwitterionic resonance form is a significant but not dominant¹⁴ structural contributor.

Despite abundant literature precedent,⁹ repeated attempts to remove the methoxy group from 2 were unsuccessful. However, BF₃ gas has been previously shown to convert manganese carbene complexes (RC(OR')==)Mn(CO)₂(η^5 -C₅H₅) to cationic carbyne complexes [(RC==)Mn(CO)₂(η^5 -C₅H₅)]⁺BF₄^{-.15} Accordingly, reaction of 4 and BF₃ gave the target C₃ complex [(η^5 -C₅H₅)]Re-(NO)(PPh₃)(CCC)Mn(CO)₂(η^5 -C₅H₅)]⁺BF₄⁻⁻ (5) in 95% yield after workup (Scheme II).

Complex 5 was characterized analogously to 2–4.¹⁰ The FAB mass spectrum gave a strong ion for the cation, and the ¹³C NMR spectrum showed ReC, CCC, and CMn resonances at 194.9 (d, $J_{CP} = 12.3$ Hz), 169.9, and 286.4 ppm. The IR ν_{NO} absorption (1701 (s) cm⁻¹) was in the region noted above for ⁺Re==C==C

Figure 2. UV/visible spectra of 4 and 5 (CH₂Cl₂, ambient temperature, $3.0-3.9 \times 10^{-5}$ M).

complexes, and bands at 2037 (s), 1987 (s), and 1889 (vs) were assigned as ν_{CO} , ν_{CO} , and $\nu_{C=C}$ or ν_{CCC} , respectively. The CMn ¹³C NMR peak was closer to those of manganese propadienylidene complexes (R₂C=C=C)Mn(CO)₂(η^{5} -C₅H₅)(305-331 ppm)¹⁶ than to those of carbyne complexes [(RC=)Mn-(CO)₂(η^{5} -C₅H₅)]⁺X⁻ (356-357 ppm).¹⁷ These and other data suggested a dominant structural contribution by the fully cumulated ⁺Re=C=C=C=Mn resonance form **5b** (Scheme II).

Thus, the crystal structure of 5 was determined (Figure 1).¹⁰ Two independent cations with similar metrical parameters were found in the unit cell. The six MCC and CCC bond angles ranged from 170(2)° to 178(2)° for an essentially linear ReCCCMn linkage. The four CC bonds ranged from 1.26(2) to 1.32(2) Å, indicative of predominant double bond character.¹⁸ The ReC bonds (1.92–1.93(1) Å) were shorter than that in 2, and the MnC bonds (1.75(2) Å) were closer to that in a propadienylidene complex (R₂C==C==)Mn(CO)₂(η^{5} -C₅H₅) (1.806(6) Å)¹⁹ than to that in a vinyl-substituted carbyne complex [(R₂-C=CHC==)Mn(CO)₂(η^{5} -C₅H₅)]⁺BF₄⁻ (1.665(5) Å).²⁰ Hence, **5b** best represents the structure of the C₃ complex.

The physical and chemical properties of 5 are under investigation. For example, the UV/visible spectrum (Figure 2) shows an extremely strong absorption at 392 nm and a weaker one at 484 nm (ϵ 56 000, 3700 M⁻¹ cm⁻¹). Complexes 2–4 also give visible absorptions, as illustrated for 4 (446 nm, ϵ 9700 M⁻¹ cm⁻¹). We speculate that some of these arise from charge transfer from rhenium to the other metal center. Extensions of our methodology to other novel forms of coordinated carbon, and additional properties of 2–5, will be reported in the near future.^{21,22}

Supplementary Material Available: Characterization of 2-5; tables of crystallographic data and structural parameters for 2 and 5 (16 pages); listing of observed and calculated structure factors (43 pages). Ordering information is given on any current masthead page.

^{(13) (}a) Daran, J.-C.; Jeannin, Y. Acta Crystallogr. 1980, B36, 1392. (b) Toledano, C. A.; Parlier, A.; Rudler, H.; Daran, J.-C.; Jeannin, Y. J. Chem. Soc., Chem. Commun. 1984, 576. (c) Alvarez, C.; Pacreau, A.; Parlier, A.; Rudler, H.; Daran, J.-C. Organometallics 1987, 6, 1057. (d) Macomber, D. W.; Hung, M.-H.; Verma, A. G.; Rogers, R. D. Ibid. 1988, 7, 2072. (e) Cordes, A. W.; Graham, J. B.; Lu, J.; Ferede, R.; Allison, N. T. Acta Crystallogr. 1989, C45, 1623. (f) Breimair, J.; Weidmann, T.; Wagner, B.; Beck, W. Chem. Ber. 1991, 124, 2431.

⁽¹⁴⁾ The CW bond length in 2 (2.200(8) Å) is closer to those in carbene complexes $(RC(OR')=)W(CO)_5$ (2.09–2.22 Å)¹³ than to those in anionic alkyl complexes $[RW(CO)_5]^{-}$ (2.31–2.34 Å): Casey, C. P.; Polichnowski, S. W.; Tuinstra, H. E.; Albin, L. D.; Calabrese, J. C. *Inorg. Chem.* 1978, 17, 3045. Darensbourg, D. J.; Bauch, C. G.; Rheingold, A. L. *Ibid.* 1987, 26, 977.

^{(15) (}a) Fischer, E. O.; Chen, J.; Scherzer, K. J. Organomet. Chem. 1983, 253, 231. (b) Handwerker, B. M.; Garrett, K. E.; Nagle, K. L.; Geoffroy, G. L.; Rheingold, A. L. Organometallics 1990, 9, 1562.

^{(16) (}a) Berke, H. Chem. Ber. 1980, 113, 1370. (b) Kolobava, N. E.; Ivanov, L. L.; Zhvanko, O. S. Izv. Akad. Nauk SSSR, Ser. Khim. 1980, 478, 2646.

 ^{(17) (}a) Fischer, E. O.; Meineke, E. W.; Kreiβl, F. R. Chem. Ber. 1977,
 110, 140. (b) Fischer, E. O.; Postonov, V. N.; Kreiβl, F. R. J. Organomet.
 Chem. 1982, 231, C73.

⁽¹⁸⁾ The C=C bond lengths in allene and butatriene are 1.31-1.28 Å: March, J. Advanced Organic Chemistry, 4th ed.; Wiley: New York, 1992; p 21.

⁽¹⁹⁾ Berke, H.; Huttner, G.; Seyerl, J. V. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1981, 36, 1277.

 ⁽²⁰⁾ Kolobova, N. E.; Ivanov, L. L.; Zhvanko, O. S.; Khitrova, O. M.;
 Batsanov, A. S.; Struchkov, Yu. T. J. Organomet. Chem. 1984, 262, 39.
 (21) Weng, W.; Arif, A.; Gladysz, J. A. Angew. Chem., Int. Ed. Engl., in

⁽²¹⁾ Weng, W.; Arli, A.; Gladysz, J. A. Angew. Chem., Int. Ed. Engl., If press.

⁽²²⁾ We thank the DOE for support of this research.